Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Genom ; 4(5): 100541, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38663408

RESUMEN

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Monocitos , Adulto , Femenino , Humanos , Masculino , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Persona de Mediana Edad , Anciano
2.
Elife ; 132024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224499

RESUMEN

The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.


Asunto(s)
Predisposición Genética a la Enfermedad , Tuberculosis , Humanos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Tuberculosis/genética , Grupos Raciales/genética
3.
Am J Hum Genet ; 111(2): 295-308, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232728

RESUMEN

Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.


Asunto(s)
Predisposición Genética a la Enfermedad , Hipersensibilidad , Inflamación , Humanos , Estudio de Asociación del Genoma Completo , Hipersensibilidad/genética , Inflamación/genética , Subunidad p50 de NF-kappa B/genética , Biobanco del Reino Unido
4.
Pediatr Infect Dis J ; 42(11): e417-e420, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647356

RESUMEN

We conducted a retrospective, observational study of 42 children with intracranial empyema admitted to a pediatric neurosurgical center over a 9-year period. Intracranial empyema is rare, but causes significant morbidity and mortality. Twenty-eight cases had neurosurgical source control, more commonly for subdural collections. Streptococcus anginosus group bacteria are important pathogens in subdural empyema, whose isolation predicts more complicated postoperative courses.

5.
Pediatr Infect Dis J ; 42(9): e343-e345, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37200507

RESUMEN

Cystic echinococcosis is a zoonosis caused by the larvae of Echinococcus granulosus . Pulmonary disease may be asymptomatic until the cyst ruptures or becomes secondarily infected. We report a case of pulmonary cystic echinococcosis presenting in the United Kingdom, with discussion on management: optimum antihelminthic agent, length of treatment and type of operative intervention. Treatment should be individualized to the clinical scenario.


Asunto(s)
Equinococosis , Echinococcus granulosus , Animales , Humanos , Niño , Equinococosis/diagnóstico , Equinococosis/tratamiento farmacológico , Equinococosis/cirugía , Zoonosis , Reino Unido , Dolor en el Pecho/etiología
6.
medRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798349

RESUMEN

IL-6 responses are ubiquitous in Mycobacterium tuberculosis (Mtb) infections, but their role in determining human tuberculosis (TB) disease risk is unknown. We used single nucleotide polymorphisms (SNPs) in and near the IL-6 receptor (IL6R) gene, focusing on the non-synonymous variant, rs2228145, associated with reduced classical IL-6 signalling, to assess the effect of altered IL-6 activity on TB disease risk. We identified 16 genome wide association studies (GWAS) of TB disease collating 17,982 cases of TB disease and 972,389 controls across 4 continents. Meta-analyses and Mendelian randomisation analyses revealed that reduced classical IL-6 signalling was associated with lower odds of TB disease, a finding replicated using multiple, independent SNP instruments and 2 separate exposure variables. Our findings establish a causal relationship between IL-6 signalling and the outcome of Mtb infection, suggesting IL-6 antagonists do not increase the risk of TB disease and should be investigated as adjuncts in treatment.

7.
Nat Med ; 28(12): 2592-2600, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36526722

RESUMEN

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Asunto(s)
Interleucina-7 , Melanoma , Humanos , Interleucina-7/genética , Interleucina-7/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Melanoma/tratamiento farmacológico , Melanoma/genética , Linfocitos T CD8-positivos , Variación Genética
8.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121873

RESUMEN

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Lepra , Humanos , Niño , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Malaui , Malí , Lepra/genética , Proteínas de Transporte de Nucleósidos/genética
9.
Elife ; 112022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866869

RESUMEN

Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here, we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with Plasmodium falciparum parasitaemia. We construct a joint dataset including 1445 bacteraemia cases and 1143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data, we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so, we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children.


Bacterial infections are a major cause of severe illness and death in African children. Understanding which children are at risk of life-threatening infection and why, is key to designing new tools to help protect them. Some risk is likely inherited, but scientists do not know which genes are responsible. Genome-wide association studies (GWAS) may be one way to identify bacterial infection risk genes. GWAS look for genetic differences associated with a particular disease. But previous GWAS studies have failed to find genes linked with bacterial infections in African children because they were too small. Malaria is another frequent cause of life-threatening illness in African children. It can be hard for clinicians to determine if a child's illness is caused by malaria, a bacterial infection, or both. Many children in Africa have malaria parasites in their blood, but they do not always cause disease. Most children with suspected severe malaria are treated with antibiotics in case of bacterial infection. Clinicians may then conduct further testing to determine the illness's actual cause. Scientists may be able to use this data on children with suspected malaria to study bacterial infections. Gilchrist et al. show that children with an unusual alteration in the BIRC6 gene are at increased risk of bacterial infections. In the experiments, Gilchrist et al. used computer modeling to identify a subset of children with likely bacterial infections among 2,200 children admitted to a hospital in Kenya with a high fever and malaria parasites. By combining information on this subset of children with data on children with confirmed bacterial infections and healthy children, Gilchrist created a sample of 5,400 children for a GWAS. The analyses found that children with a variation in the BIRC6 gene on chromosome 2 had a higher risk of bacterial infections. This genetic change is linked with the production of a modified form of BIRC6 in infection-fighting immune cells called monocytes. More studies will help scientists understand how this change might contribute to severe bacterial infections. Learning more may help scientists develop new treatment strategies and identify children most at risk.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Malaria , Bacteriemia/microbiología , Niño , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Inhibidoras de la Apoptosis , Kenia/epidemiología , Malaria/complicaciones , Malaria/epidemiología
10.
Nat Commun ; 13(1): 4073, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835762

RESUMEN

Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans (n = 245). We find a significant subset of genes demonstrate expression quantitative trait loci specific to Natural Killer cells and these are highly informative of human disease, in particular autoimmunity. A Natural Killer cell transcriptome-wide association study across five common autoimmune diseases identifies further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor region, GNLY, MC1R and UVSSA. Our findings provide new insights into the unique biology of Natural Killer cells, demonstrating markedly different expression quantitative trait loci from other immune cells, with implications for disease mechanisms.


Asunto(s)
Enfermedades Autoinmunes , Transcriptoma , Enfermedades Autoinmunes/genética , Autoinmunidad/genética , Proteínas Portadoras , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células Asesinas Naturales , Polimorfismo de Nucleótido Simple
11.
BMC Med ; 18(1): 148, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32536341

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria. G6PD deficiency increases risk of severe malarial anemia, a key determinant of invasive bacterial disease in malaria-endemic settings. The pneumococcus is a leading cause of invasive bacterial infection and death in African children. The effect of G6PD deficiency on risk of pneumococcal disease is undefined. We hypothesized that G6PD deficiency increases pneumococcal disease risk and that this effect is dependent upon malaria. METHODS: We performed a genetic case-control study of pneumococcal bacteremia in Kenyan children stratified across a period of falling malaria transmission between 1998 and 2010. RESULTS: Four hundred twenty-nine Kenyan children with pneumococcal bacteremia and 2677 control children were included in the study. Among control children, G6PD deficiency, secondary to the rs1050828 G>A mutation, was common, with 11.2% (n = 301 of 2677) being hemi- or homozygotes and 33.3% (n = 442 of 1329) of girls being heterozygotes. We found that G6PD deficiency increased the risk of pneumococcal bacteremia, but only during a period of high malaria transmission (P = 0.014; OR 2.33, 95% CI 1.19-4.57). We estimate that the population attributable fraction of G6PD deficiency on risk of pneumococcal bacteremia in areas under high malaria transmission is 0.129. CONCLUSIONS: Our data demonstrate that G6PD deficiency increases risk of pneumococcal bacteremia in a manner dependent on malaria. At the population level, the impact of G6PD deficiency on invasive pneumococcal disease risk in malaria-endemic regions is substantial. Our study highlights the infection-associated morbidity and mortality conferred by G6PD deficiency in malaria-endemic settings and adds to our understanding of the potential indirect health benefits of improved malaria control.


Asunto(s)
Bacteriemia/etiología , Glucosafosfato Deshidrogenasa/efectos adversos , Infecciones Neumocócicas/etiología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Kenia , Masculino
12.
Sci Adv ; 5(9): eaaw0109, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517041

RESUMEN

Iron acquisition is critical for life. Ferroportin (FPN) exports iron from mature erythrocytes, and deletion of the Fpn gene results in hemolytic anemia and increased fatality in malaria-infected mice. The FPN Q248H mutation (glutamine to histidine at position 248) renders FPN partially resistant to hepcidin-induced degradation and was associated with protection from malaria in human studies of limited size. Using data from cohorts including over 18,000 African children, we show that the Q248H mutation is associated with modest protection against anemia, hemolysis, and iron deficiency, but we found little evidence of protection against severe malaria or bacteremia. We additionally observed no excess Plasmodium growth in Q248H erythrocytes ex vivo, nor evidence of selection driven by malaria exposure, suggesting that the Q248H mutation does not protect from malaria and is unlikely to deprive malaria parasites of iron essential for their growth.


Asunto(s)
Anemia/genética , Proteínas de Transporte de Catión/genética , Deficiencias de Hierro , Mutación Missense , Sustitución de Aminoácidos , Anemia/metabolismo , Bacteriemia/genética , Bacteriemia/metabolismo , Proteínas de Transporte de Catión/metabolismo , Eritrocitos/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Hierro/metabolismo , Malaria/genética , Malaria/metabolismo , Masculino
13.
Gates Open Res ; 3: 1501, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410397

RESUMEN

Invasive nontyphoidal Salmonella (iNTS) disease is a major cause of deaths among children and HIV-infected individuals in sub-Saharan Africa. Acquisition of IgG to iNTS lipopolysaccharide (LPS) O-antigen in Malawi in early childhood corresponds with a fall in cases of iNTS disease suggesting that vaccines able to induce such antibodies could confer protection. To better understand the acquisition of IgG to iNTS in other African settings, we performed a cross-sectional seroepidemiological study using sera from 1090 Ugandan individuals aged from infancy to old age. Sera were analysed for IgG to LPS O-antigen of S. Typhimurium and S. Enteritidis using an in-house ELISA. Below 18 months of age, most children lacked IgG to both serovars. Thereafter, specific IgG levels increased with age, peaking in adulthood, and did not wane noticeably in old age. There was no clear difference in antibody levels between the sexes and the few HIV-infected individuals in the study did not have obviously different levels from uninfected subjects. While IgG to iNTS is acquired at a younger age in Malawian compared with Ugandan children, it is not clear whether this is due to differences in the populations themselves, their exposure to iNTS, or variations between assays used. In conclusion, there is a need to develop a harmonised method and standards for measuring antibodies to iNTS across studies and to investigate acquisition of such antibodies with age across different sites in sub-Saharan Africa.

14.
EcoSal Plus ; 8(2)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657108

RESUMEN

Nontyphoidal salmonellae (NTS) are a major cause of invasive (iNTS) disease in sub-Saharan Africa, manifesting as bacteremia and meningitis. Available epidemiological data indicate that iNTS disease is endemic in much of the region. Antimicrobial resistance is common and case fatality rates are high. There are well-characterized clinical associations with iNTS disease, including young age, HIV infection, malaria, malnutrition, anemia, and sickle cell disease. However, the clinical presentation of iNTS disease is often with fever alone, so clinical diagnosis is impossible without blood culture confirmation. No vaccine is currently available, making this a priority area for global health research. Over the past ten years, it has emerged that iNTS disease in Africa is caused by distinct pathovars of Salmonella Typhimurium, belonging to sequence type ST313, and Salmonella Enteritidis. These are characterized by genome degradation and appear to be adapting to an invasive lifestyle. Investigation of rare patients with primary immunodeficiencies has suggested a key role for interferon gamma-mediated immunity in host defense against NTS. This concept has been supported by recent population-based host genetic studies in African children. In contrast, immunoepidemiological studies from Africa indicate an important role for antibody for protective immunity, supporting the development of antibody-inducing vaccines against iNTS disease. With candidate O-antigen-based vaccines due to enter clinical trials in the near future, research efforts should focus on understanding the relative contributions of antibody and cell-mediated immunity to protection against iNTS disease in humans.


Asunto(s)
Infecciones por Salmonella/complicaciones , Infecciones por Salmonella/epidemiología , Salmonella enteritidis/patogenicidad , Salmonella typhimurium/patogenicidad , África del Sur del Sahara/epidemiología , Bacteriemia/epidemiología , Costo de Enfermedad , Humanos , Meningitis Bacterianas/epidemiología , Factores de Riesgo , Salmonella enteritidis/genética , Salmonella typhimurium/genética
15.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29866910

RESUMEN

In order to deploy virulence factors at appropriate times and locations, microbes must rapidly sense and respond to various metabolite signals. Previously, we showed a transient elevation of the methionine-derived metabolite methylthioadenosine (MTA) concentration in serum during systemic Salmonella enterica serovar Typhimurium infection. Here we explored the functional consequences of increased MTA concentrations on S Typhimurium virulence. We found that MTA, but not other related metabolites involved in polyamine synthesis and methionine salvage, reduced motility, host cell pyroptosis, and cellular invasion. Further, we developed a genetic model of increased bacterial endogenous MTA production by knocking out the master repressor of the methionine regulon, metJ Like MTA-treated S Typhimurium, the ΔmetJ mutant displayed reduced motility, host cell pyroptosis, and invasion. These phenotypic effects of MTA correlated with suppression of flagellar and Salmonella pathogenicity island 1 (SPI-1) networks. S Typhimurium ΔmetJ had reduced virulence in oral and intraperitoneal infection of C57BL/6J mice independently of the effects of MTA on SPI-1. Finally, ΔmetJ bacteria induced a less severe inflammatory cytokine response in a mouse sepsis model. Together, these data indicate that exposure of S Typhimurium to MTA or disruption of the bacterial methionine metabolism pathway suppresses S Typhimurium virulence.


Asunto(s)
Adenosina/metabolismo , Metionina/metabolismo , Salmonella typhimurium/patogenicidad , Adenosina/análogos & derivados , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Flagelos , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Ratones , Ratones Endogámicos C57BL , Poliaminas/metabolismo , Proteínas Represoras/genética , Salmonelosis Animal/microbiología , Virulencia/efectos de los fármacos , Factores de Virulencia/genética
16.
Nat Commun ; 9(1): 1014, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523850

RESUMEN

Nontyphoidal Salmonella (NTS) is a major cause of bacteraemia in Africa. The disease typically affects HIV-infected individuals and young children, causing substantial morbidity and mortality. Here we present a genome-wide association study (180 cases, 2677 controls) and replication analysis of NTS bacteraemia in Kenyan and Malawian children. We identify a locus in STAT4, rs13390936, associated with NTS bacteraemia. rs13390936 is a context-specific expression quantitative trait locus for STAT4 RNA expression, and individuals carrying the NTS-risk genotype demonstrate decreased interferon-γ (IFNγ) production in stimulated natural killer cells, and decreased circulating IFNγ concentrations during acute NTS bacteraemia. The NTS-risk allele at rs13390936 is associated with protection against a range of autoimmune diseases. These data implicate interleukin-12-dependent IFNγ-mediated immunity as a determinant of invasive NTS disease in African children, and highlight the shared genetic architecture of infectious and autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/genética , Bacteriemia/epidemiología , Predisposición Genética a la Enfermedad , Factor de Transcripción STAT4/genética , Infecciones por Salmonella/epidemiología , Salmonella/patogenicidad , Adolescente , Alelos , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/microbiología , Bacteriemia/genética , Bacteriemia/inmunología , Bacteriemia/microbiología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Inmunidad Celular/genética , Lactante , Recién Nacido , Interferón gamma/sangre , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-12/inmunología , Interleucina-12/metabolismo , Kenia/epidemiología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Malaui/epidemiología , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo , Salmonella/aislamiento & purificación , Infecciones por Salmonella/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología
19.
PLoS Negl Trop Dis ; 11(12): e0006027, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29216183

RESUMEN

Nontyphoidal Salmonellae commonly cause invasive disease in African children that is often fatal. The clinical diagnosis of these infections is hampered by the absence of a clear clinical syndrome. Drug resistance means that empirical antibiotic therapy is often ineffective and currently no vaccine is available. The study objective was to identify risk factors for mortality among children presenting to hospital with invasive Salmonella disease in Africa. We conducted a prospective study enrolling consecutive children with microbiologically-confirmed invasive Salmonella disease admitted to Queen Elizabeth Central Hospital, Blantyre, in 2006. Data on clinical presentation, co-morbidities and outcome were used to identify children at risk of inpatient mortality through logistic-regression modeling. Over one calendar year, 263 consecutive children presented with invasive Salmonella disease. Median age was 16 months (range 0-15 years) and 52/256 children (20%; 95%CI 15-25%) died. Nontyphoidal serovars caused 248/263 (94%) of cases. 211/259 (81%) of isolates were multi-drug resistant. 251/263 children presented with bacteremia, 6 with meningitis and 6 with both. Respiratory symptoms were present in 184/240 (77%; 95%CI 71-82%), 123/240 (51%; 95%CI 45-58%) had gastrointestinal symptoms and 101/240 (42%; 95%CI 36-49%) had an overlapping clinical syndrome. Presentation at <7 months (OR 10.0; 95%CI 2.8-35.1), dyspnea (OR 4.2; 95%CI 1.5-12.0) and HIV infection (OR 3.3; 95%CI 1.1-10.2) were independent risk factors for inpatient mortality. Invasive Salmonella disease in Malawi is characterized by high mortality and prevalence of multi-drug resistant isolates, along with non-specific presentation. Young infants, children with dyspnea and HIV-infected children bear a disproportionate burden of the Salmonella-associated mortality in Malawi. Strategies to improve prevention, diagnosis and management of invasive Salmonella disease should be targeted at these children.


Asunto(s)
Bacteriemia/epidemiología , Infecciones por VIH/complicaciones , Meningitis Bacterianas/epidemiología , Infecciones por Salmonella/epidemiología , Salmonella/inmunología , Adolescente , Bacteriemia/etiología , Bacteriemia/microbiología , Bacteriemia/mortalidad , Niño , Preescolar , Farmacorresistencia Bacteriana Múltiple , Femenino , Humanos , Lactante , Modelos Logísticos , Malaui/epidemiología , Masculino , Meningitis Bacterianas/etiología , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/mortalidad , Prevalencia , Estudios Prospectivos , Factores de Riesgo , Salmonella/aislamiento & purificación , Infecciones por Salmonella/etiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/mortalidad , Serogrupo
20.
Sci Adv ; 3(3): e1602096, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28345042

RESUMEN

Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting.


Asunto(s)
Adenosina , Modelos Biológicos , Polimorfismo de Nucleótido Simple , Infecciones por Salmonella , Salmonella , Sepsis , Adenosina/análogos & derivados , Adenosina/sangre , Adenosina/genética , Adolescente , Biomarcadores/sangre , Femenino , Estudio de Asociación del Genoma Completo , Genética Humana , Humanos , Aprendizaje Automático , Masculino , Infecciones por Salmonella/sangre , Infecciones por Salmonella/genética , Infecciones por Salmonella/mortalidad , Sepsis/sangre , Sepsis/genética , Sepsis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...